In this report we present new sixth order iterative methods for solving non-linear equations. The derivation of these methods is purely based on variational iteration technique. To check the validity and efficiency we compare of methods with Newton’s method, Ostrowski’s method, Traub’s method and modified Halleys’s method by solving some test examples. Numerical results shows that our developed methods are more effective. Finally, we compare polynomigraphs of our developed methods with Newton’s method, Ostrowski’s method, Traub’s method and modified Halleys’s method.
In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation
where
This paper deals with the determination of a coefficient in the diffusion term of some degenerate /singular one-dimensional linear parabolic equation from final data observations. The mathematical model leads to a non convex minimization problem. To solve it, we propose a new approach based on a hybrid genetic algorithm (married genetic with descent method type gradient). Firstly, with the aim of showing that the minimization problem and the direct problem are well posed, we prove that the solution’s behavior changes continuously with respect to the initial conditions. Secondly, we chow that the minimization problem has at least one minimum. Finally, the gradient of the cost function is computed using the adjoint state method. Also we present some numerical experiments to show the performance of this approach.
In this paper, we find a solution of a new type of Langevin equation involving Hilfer fractional derivatives with impulsive effect. We formulate sufficient conditions for the existence and uniqueness of solutions. Moreover, we present Hyers-Ulam stability results.
Let
In this paper, we consider initial boundary value problem of the generalized Boussinesq equation with nonlinear interior source and boundary absorptive terms. We establish both the existence of the solution and a general decay of the energy functions under some restrictions on the initial data. We also prove a blow-up result for solutions with positive and negative initial energy respectively.
It is proved that if the problem
In this paper, we use Riccati transformation technique to establish some new oscillation criteria for the second order nonlinear dynamic equation with damping on time scales
We define fractional transforms
Let