Open Journal of Mathematical Analysis (OMA)

The Open Journal of Mathematical Analysis (OMA) ISSN: 2616-8103 (Print), 2616-8111(Online) is an international research journal dedicated to the publication of original and high quality research papers that treat the mathematical analysis in broad and abstract settings. To ensure fast publication, editorial decisions on acceptance or otherwise are taken within 4 to 12 weeks (three months) of receipt of the paper.

Accepted articles are immediately published online as soon as they are ready for publication. There is one volume containing two issues per year. The issues will be finalized in June and December of every year. The printed version will be published in December of every year. The journal will also publish survey articles giving details of research progress made during the last three decades in a particular area.

Latest Published Articles

Author(s): Janet Kwakye1, J. M. Tchuenche2
1Department of industrial Engineering, New Mexico State University, Las Cruces NM, USA
2School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
Abstract:

A two-strain model of the transmission dynamics of herpes simplex virus (HSV) with treatment is formulated as a deterministic system of nonlinear ordinary differential equations. The model is then analyzed qualitatively, with numerical simulations provided to support the theoretical results. The basic reproduction number \(R_0\) is computed with \(R_0=\text{max}\lbrace R_1, R_2 \rbrace\) where \(R_1\) and \(R_2\) represent respectively the reproduction number for HSV1 and HSV2. We also compute the invasion reproductive numbers \(\tilde{R}_1\) for strain 1 when strain 2 is at endemic equilibrium and \(\tilde{R}_2\) for strain 2 when strain 1 is at endemic equilibrium. To determine the relative importance of model parameters to disease transmission, sensitivity analysis is carried out. The reproduction number is most sensitive respectively to the contact rates \(\beta_1\), \(\beta_2\) and the recruitment rate \(\pi\). Numerical simulations indicate the co-existence of the two strains, with HSV1 dominating but not driving out HSV2 whenever \(R_1 > R_2 > 1\) and vice versa.

Author(s): Ayotunde O. Lasode1, Timothy O. Opoola2
1Department of Mathematics, University of Ilorin, PMB 1515, Ilorin, Nigeria.;
2Department of Mathematics, University of Ilorin, PMB 1515, Ilorin, Nigeria.
Abstract:

In this paper, the \(q\)-derivative operator and the principle of subordination were employed to define a subclass \(\mathcal{B}_q(\tau,\lambda,\phi)\) of analytic and bi-univalent functions in the open unit disk \(\mathcal{U}\). For functions \(f(z)\in\mathcal{B}_q(\tau,\lambda,\phi)\), we obtained early coefficient bounds and some Fekete-Szegö estimates for real and complex parameters.

Author(s): O. Ogola1, N. B. Okelo1, O. Ongati1
1Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Box 210-40601, Bondo-Kenya.
Abstract:

In this paper, we give characterizations of separation criteria for bitopological spaces via \(ij\)-continuity. We show that if a bitopological space is a separation axiom space, then that separation axiom space exhibits both topological and heredity properties. For instance, let \((X, \tau_{1}, \tau_{2})\) be a \(T_{0}\) space then, the property of \(T_{0}\) is topological and hereditary. Similarly, when \((X, \tau_{1}, \tau_{2})\) is a \(T_{1}\) space then the property of \(T_{1}\) is topological and hereditary. Next, we show that separation axiom \(T_{0}\) implies separation axiom \(T_{1}\) which also implies separation axiom \(T_{2}\) and the converse is true.

Author(s): Mohamed Rossafi1, Abdelkarim Kari2
1LASMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes, Morocco.
2Laboratory of Algebra, Analysis and Applications Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco.
Abstract:

In this paper, we present the notion of generalized \(F\)-expansive mapping in complete rectangular metric spaces and study various fixed point theorems for such mappings. The findings of this paper, generalize and improve many existing results in the literature.

Author(s): Nour el imane Khadidja CHERIET1, Benharrat BELAÏDI2
1Department of Mathematics, Ibnou-Khaldoun University, Tiaret-Algeria.
2Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-Algeria.
Abstract:

In this paper, we precise the hyper order of solutions for a class of higher order linear differential equations and investigate the exponents of convergence of the fixed points of solutions and their first derivatives for the second order case. These results generalize those of Nan Li and Lianzhong Yang and of Chen and Shon.

Author(s): Curtis Holliman1, Logan Hyslop1
1Department of Mathematics, The Catholic University of America, Washington, DC 20064, USA
Abstract:

The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \(s > \frac{1}{4}\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \([k; Z]\)-multiplier norm method developed by Terence Tao.

Author(s): W. L. Otae1, N. B. Okelo1, O. Ongati1
1Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Box 210-40601, Bondo-Kenya
Abstract:

In this paper, we give characterizations of orthogonality conditions in certain classes of normed spaces. We first consider Range-Kernel orthogonality in norm-attainable classes then we characterize orthogonality conditions for Jordan elementary operators.

Author(s): Christophe Chesneau1
1Université de Caen Normandie, LMNO, Campus II, Science 3, 14032, Caen, France
Abstract:

Copulas played a key role in numerous areas of statistics over the last few decades. In this paper, we offer a new kind of trigonometric bivariate copula based on power and cosine functions. We present it via analytical and graphical approaches. We show that it may be used to create a new bivariate normal distribution with interesting shapes. Subsequently, the simplest version of the suggested copula is highlighted. We discuss some of its relationships with the Farlie-Gumbel-Morgensten and simple polynomial-sine copulas, establish that it is a member of a well-known semi-parametric family of copulas, investigate its dependence domains, and show that it has no tail dependence.

Author(s): Ahmed Ali Al-Gonah1, Ahmed Ali Atash2
1Department of Mathematics, Faculty of Science, Aden University, Aden, Yemen
2Department of Mathematics, Faculty of Education Shabwah, Aden University, Aden, Yemen
Abstract:

Recently, many extensions of some special functions are defined by using the extended Beta function. In this paper, we introduce a new generalization of extended Gegenbauer polynomials of two variables by using the extended Gamma function. Some properties of these generalized polynomials such as integral representation, recurrence relation and generating functions are obtained.

Author(s): Bashir Danladi Garba1,2, Sirajo Lawan Bichi2
1Department of Mathematics, Kano University of Science and technology, Wudil Kano, Nigeria
2Department of Mathematical Sciences, Bayero University Kano, Nigeria
Abstract:

In this paper, a hybrid of Finite difference-Simpson’s approach was applied to solve linear Volterra integro-differential equations. The method works efficiently great by reducing the problem into a system of linear algebraic equations. The numerical results shows the simplicity and effectiveness of the method, error estimation of the method is provided which shows that the method is of second order convergence.