Search for Articles:

Open Journal of Mathematical Analysis (OMA)

The Open Journal of Mathematical Analysis (OMA) ISSN: 2616-8103 (Print), 2616-8111(Online) is an international peer-reviewed journal dedicated to the publication of original and high-quality research papers in mathematical analysis, broadly defined in abstract and applied settings. Since its inception, OMA has established itself as a venue for both foundational and innovative contributions in analysis.

  • Open Access: OMA follows the Diamond Open Access model—completely free for both authors and readers, with no APCs. All articles are accessible online without financial, legal, or technical barriers, ensuring global dissemination of mathematical research.
  • Visibility: Articles are published online immediately upon acceptance and included in an annual printed edition in December, maximizing reach across digital and physical formats.
  • Rapid Publication: Peer-review decisions are provided within 4 to 12 weeks, with accepted articles published online promptly.
  • Scope: Publishes original research and survey articles in mathematical analysis, covering broad and abstract topics, including reviews of progress over the past three decades.
  • Publication Frequency: One volume with two issues annually (June and December), with a printed edition released in December.
  • Indexing: Indexed in ROAD, FATCAT, ZDB, Wikidata, SUDOC, OpenAlex, EZB, and Crossref, ensuring visibility and scholarly reach in multiple international platforms.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Abdelhakam Hassan Mohammed1,2, Ali. B. B. Almurad1
1Department of Mathematics and Computer, College of Education, Alsalam University, Alfula, Sudan.
2College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P.R. China.
Abstract:

This paper deals with nonnegative solutions of the Neumann initial-boundary value problem for an attraction-repulsion chemotaxis model with logistic source term of Eq. (1) in bounded convex domains \(\Omega\subset\mathbb{R}^{n},~ n\geq1\), with smooth boundary. It is shown that if the ratio \(\frac{\mu}{\chi \alpha-\xi \gamma}\) is sufficiently large, then the unique nontrivial spatially homogeneous equilibrium given by \((u_{1},u_{2},u_{3})=(1,~\frac{\alpha}{\beta},~\frac{\gamma}{\eta})\) is globally asymptotically stable in the sense that for any choice of suitably regular nonnegative initial data \((u_{10},u_{20},u_{30})\) such that \(u_{10}\not\equiv0\), the above problem possesses uniquely determined global classical solution \((u_{1},u_{2},u_{3})\) with \((u_{1},u_{2},u_{3})|_{t=0}=(u_{10},u_{20},u_{30})\) which satisfies \(\left\|u_{1}(\cdot,t)-1\right\|_{L^{\infty}(\Omega)}\rightarrow{0},~~
\left\|u_{2}(\cdot,t)-\frac{\alpha}{\beta}\right\|_{L^{\infty}(\Omega)}\rightarrow{0},\left\|u_{3}(\cdot,t)-\frac{\gamma}{\eta}\right\|_{L^{\infty}(\Omega)}\rightarrow{0}\,,\) \(\mathrm{as}~t\rightarrow{\infty}\).

Lewis N. K. Mambo1, Victor G. Musa1, Gabriel M. Kalonda1
1Central Bank of Congo, University of Kinshasa, Democratic Republic of the Congo.
Abstract:

The purpose of this paper is to emphasize the role of the Bayesian Vector Autoregressive models (VAR) in macroeconomic analysis and forecasting. To help the policy-makers to do better, the Bayesian VAR models are considered more robust and valuable because they put in the model the mathematician’s beliefs or priors and the data. By using BVAR(1), we get the main results: (i)the best out sample point forecasts; (ii) the exchange rate shock contributes more to inflation; (iii) the inflation shock has high effects on exchange rate innovation. These results are due to the dollarization of this small open economy.

Houdeifa x Houdeifa Melki1, Amar Makhlouf2
1Department of Mathematics, University Mostefa Benboulaid Batna 2, Batna, Algeria.
2Department of Mathematics, University of Annaba, Laboratory LMA, P.O.Box 12, Annaba 23000, Algeria.
Abstract:

This article considers the limit cycles of a class of Kukles polynomial differential systems of the form Eq. (5). We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center \(\dot{x}=y, \dot{y}=-x,\) by using the averaging theory of first and second order.

Mamman Ojima John1, Aboiyar Terhemen1, Tivde Tertsegha1
1Department of Mathematics/Statistics/Computer Science, Faculty of Science, Federal University of Agriculture Makurdi, Benue State, Nigeria.
Abstract:

This research presents the solution of the generalized version of Abel’s integral equation, which was computed considering the first and second kinds. First, Abel’s integral equation and its generalization were described using fractional calculus, and the properties of Orthogonal polynomials were also described. We then developed a technique of solution for the generalized Abel’s integral equation using infinite series of orthogonal polynomials and utilized the numerical method to approximate the generalized Abel’s integral equation of the first and second kind, respectively. The Riemann-Liouville fractional operator was used in these examples. Our technique was implemented in MAPLE 17 through some illustrative examples. Absolute errors were estimated. In addition, the occurred errors between using orthogonal polynomials for solving Abel’s integral equations of order \(0\ <\ \alpha \ <\ 1\) and the exact solutions show that the orthogonal polynomials used were highly effective, reliable and can be used independently in situations where the exact solution is unknown which the numerical experiments confirmed.

Badibi O. Christopher1, Ramadhani I.2, Ndondo M. Apollinaire1, Kumwimba S. Didier1
1Département de Mathématiques et Informatique (RDC), Faculté des Sciences, Université de Lubumbashi, Democratic Republic of the Congo.
2Département de Mathématiques, Informatique et Statistiques(RDC), Faculté des Sciences et Technologies, Université de Kinshasa, Democratic Republic of the Congo.
Abstract:

Stochastic differential equations (SDEs) are a powerful tool for modeling certain random trajectories of diffusion phenomena in the physical, ecological, economic, and management sciences. However, except in some cases, it is generally impossible to find an explicit solution to these equations. In this case, the numerical approach is the only favorable possibility to find an approximative solution. In this paper, we present the mean and mean-square stability of the Non-standard Euler-Maruyama numerical scheme using the Vasicek and geometric Brownian motion models.

Bitrus Sambo1, Timothy Oloyede Opoola2
1Department of Mathematics, Gombe State University, P.M.B. 127, Gombe, Nigeria.
2Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.
Abstract:

Using opoola differential operator, we defined a subclass \(S^{n}_{p}(\lambda,\alpha,\gamma,\delta)\) of the class of multivalent or p-valent functions. Several properties of the class were studied, such as coefficient inequalities, hadamard product, radii of close-to-convex, star-likeness, convexity, extreme points, the integral mean inequalities for the fractional derivatives, and further growth and distortion theorem are given using fractional calculus techniques.

J. B. Omosowon1, A. Y. Akinyele1, F. Y. Aderibigbe1
1Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
Abstract:

In this paper, we present results of \(\omega\)-order preserving partial contraction mapping generating a nonlinear Schr\”odinger equation. We used the theory of semigroup to generate a nonlinear Schr\(\ddot{o}\)dinger equation by considering a simple application of Lipschitz perturbation of linear evolution equations. We considered the space \(L^2(\mathbb{R}^2)\) and of linear operator \(A_0$ by $D(A_0)=H^2(\mathbb{R}^2)\) and \(A_0u=-i\Delta u\) for \(u\in D(A_0)\) for the initial value problem, we hereby established that \(A_0\) is the infinitesimal generator of a \(C_0\)-semigroup of unitary operators \(T(t)\), \(-\infty<t<\infty\) on \(L^2(\mathbb{R}^2)\).

Yüksel Soykan1, Erkan Taşdemir2, Inci Okumuş3
1Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
2Pınarhisar Vocational School, Kırklareli University, 39300, Kırklareli, Turkey
3Department of Engineering Sciences, Istanbul University-Cerrahpaşa, 34100, Istanbul, Turkey.
Abstract:

In this paper, closed forms of the sum formulas \(\sum\limits_{k=0}^{n}kx^{k}W_{k}\) and \(\sum\limits_{k=1}^{n}kx^{k}W_{-k}\) for generalized Tetranacci numbers are presented. As special cases, we give summation formulas of Tetranacci, Tetranacci-Lucas, and other fourth-order recurrence sequences.

Hongwei Zhang1, Huiru Ji1
1Department of Mathematics, Henan University of Technology, Zhengzhou 450001, China.
Abstract:

This work is devoted to study the global solutions of a class of nonlinear Moore-Gibson-Thompson equation. By applying the Galerkin and compact methods, we derive some sufficient conditions on the nonlinear terms, which lead to the existence and uniqueness of the global solution.

Benard Okelo1, Jeffar Oburu1
1Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Box 210-40601, Bondo-Kenya.
Abstract:

This work is an in-depth study of the class of norm-attainable operators in a general Banach space setting. We give characterizations of norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity. In particular, we prove reflexivity, boundedness and compactness properties when the set of these operators contains unit balls with involution for the tubes when they are of stereotype category.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more