The Open Journal of Mathematical Analysis (OMA) ISSN: 2616-8103 (Print), 2616-8111(Online) is an international research journal dedicated to the publication of original and high quality research papers that treat the mathematical analysis in broad and abstract settings. To ensure fast publication, editorial decisions on acceptance or otherwise are taken within 4 to 12 weeks (three months) of receipt of the paper.
Accepted articles are immediately published online as soon as they are ready for publication. There is one volume containing two issues per year. The issues will be finalized in June and December of every year. The printed version will be published in December of every year. The journal will also publish survey articles giving details of research progress made during the last three decades in a particular area.
In the present paper, we define a class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.
In this paper, the reduced differential transform method (RDTM) is applied to solve fuzzy nonlinear partial differential equations (PDEs). The solutions are considered as infinite series expansions which converge rapidly to the solutions. Some examples are solved to illustrate the proposed method.
In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with \(q\)-derivative operator; both \(f\) and \(f^{-1}\) are \(m\)-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) are found in this study. Also certain special cases are indicated.
The purpose of this paper is to prove a fixed point theorem for \(C\)-class functions in complete \(b\)-metric spaces. Moreover, the solution of the integral equation is obtained using our main result.
In this work, we establish \(L^p\) local uncertainty principle for the Hankel-Stockwell transform and we deduce \(L^p\) version of Heisenberg-Pauli-Weyl uncertainty principle. Next, By combining these principles and the techniques of Donoho-Stark we present uncertainty principles of concentration type in the \(L^p\) theory, when \(1\)<\(p\leqslant2\). Finally, Pitt’s inequality and Beckner’s uncertainty principle are proved for this transform.
In this paper, we are concerned with the existence and uniqueness of global strong solution of non-planar oscillations for a nonlinear coupled Kirchhoff beam equations with moving boundary.
The double dispersive wave equation with memory and source terms \(u_{tt}-\Delta u-\Delta u_{tt}+\Delta^{2}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau-\Delta u_{t}=|u|^{p-2}u\) is considered in bounded domain. The existence of global solutions and decay rates of the energy are proved.
In this paper, we introduce a new class of analytic functions by using the lambda operator and obtain some subordination results.
In this paper, we give characterizations of certain properties of inner product type integral transformers. We first consider unitarily invariant norms and operator valued functions. We then give results on norm inequalities for inner product type integral transformers in terms of Landau inequality, Grüss inequality. Lastly, we explore some of the applications in quantum theory.
Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional order differential equation \(D^\alpha u(t)=\lambda\sqrt{I^\beta[\sigma^2(t,u(t))]}\dot{w}(t),\,\,0<t<1\) with boundary conditions \(u(0)=0,\,\,u'(0)=u'(1)=0,\) where \(\lambda>0\) is a level of the noise term, \(\sigma:[0,1]\times\mathbb{R}\rightarrow\mathbb{R}\) is continuous, \(\dot{w}(t)\) is a generalized derivative of Wiener process (Gaussian white noise), \(D^\alpha\) is the Riemann-Liouville fractional differential operator of order \(\alpha\in (3,4)\) and \(I^\beta,\,\,\beta>0\) is a fractional integral operator. We formulate the solution of the equation via a stochastic Volterra-type equation and investigate its existence and uniqueness under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for a stochastic nonlinear second order differential equation for \(\alpha=2\) and \(\beta=0\) with \(u(0)=u(1)=0\) is also studied.