Ptolemy Scientific Research Press (PSR Press)is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.

Latest Published Articles

Lucky \(k\)-polynomials of null and complete split graphs

ODAM-Vol. 5 (2022), Issue 1, pp. 52 – 58 Open Access Full-Text PDF
Johan Kok

Abstract:The concept of Lucky colorings of a graph is used to introduce the notion of the Lucky \(k\)-polynomials of null graphs. We then give the Lucky \(k\)-polynomials for complete split graphs and generalized star graphs. Finally, further problems of research related to this concept are discussed.

Read Full Article

Type-II generalized Pythagorean bipolar fuzzy soft sets and application for decision making

ODAM-Vol. 5 (2022), Issue 1, pp. 36 – 51 Open Access Full-Text PDF
M. Palanikumar and K. Arulmozhi

Abstract:In the present communication, we introduce the theory of Type-II generalized Pythagorean bipolar fuzzy soft sets and define complementation, union, intersection, AND, and OR. The Type-II generalized Pythagorean bipolar fuzzy soft sets are presented as a generalization of soft sets. We showed De Morgan’s laws, associate laws, and distributive laws in Type-II generalized Pythagorean bipolar fuzzy soft set theory. Also, we advocate an algorithm to solve the decision-making problem based on a soft set model.

Read Full Article

Bijections of \(k\)-plane trees

ODAM-Vol. 5 (2022), Issue 1, pp. 29 – 35 Open Access Full-Text PDF
Isaac Owino Okoth

Abstract:A \(k\)-plane tree is a tree drawn in the plane such that the vertices are labeled by integers in the set \(\{1,2,\ldots,k\}\), the children of all vertices are ordered, and if \((i,j)\) is an edge in the tree, where \(i\) and \(j\) are labels of adjacent vertices in the tree, then \(i+j\leq k+1\). In this paper, we construct bijections between these trees and the sets of \(k\)-noncrossing increasing trees, locally oriented \((k-1)\)-noncrossing trees, Dyck paths, and some restricted lattice paths.

Read Full Article

TEMO theorem for Sombor index

ODAM-Vol. 5 (2022), Issue 1, pp. 25 – 28 Open Access Full-Text PDF
Ivan Gutman

Abstract:TEMO = topological effect on molecular orbitals was discovered by Polansky and Zander in 1982, in connection with the eigenvalues of molecular graphs. Eventually, analogous regularities were established for a variety of other topological indices. We now show that a TEMO-type regularity also holds for the Sombor index (\(SO\)): For the graphs \(S\) and \(T\), constructed by connecting a pair of vertex-disjoint graphs by two edges, \(SO(S) < SO(T)\) holds. Analogous relations are verified for several other degree-based graph invariants.

Read Full Article

Line integral and its applications

EASL-Vol. 5 (2022), Issue 1, pp. 47 – 63 Open Access Full-Text PDF
Aschale Moges Belay

Abstract:This study focused on line integral and its applications. The study was designed to show the areas where line integral is applicable and point out the role of line integral in solving practical problems. The study found out that space curves, and the concepts of scalar and vector fields are basic concepts to deal line integral. Also, the study found out that line integral is used to calculate mass, center of mass and moments of inertia of a wire, work done by a force on an object moving in a vector field, magnetic field around a conduct, voltage generated in a loop, length of a curve, area of a region bounded by a closed curve, and volume of a solid formed by rotating a closed curve about the \(x-\)axis.

Read Full Article

Dynamics of Williamson fluid over an inclined surface subject to Coriolis and Lorentz forces

EASL-Vol. 5 (2022), Issue 1, pp. 37 – 46 Open Access Full-Text PDF
Belindar A. Juma, Abayomi S. Oke, Winifred N. Mutuku, Afolabi G. Ariwayo and Olum J. Ouru

Abstract:Enhancement of heat and mass transfer heat over rotating plates in industrial processes is a major area of research recently due to several attempts to find cost-effective means. In this study, the flow of Williamson fluid is considered because of its ability to exhibit pseudo-plastic and shear-thinning properties. A theoretical analysis of the effect of Coriolis force and the angle inclination on the magnetohydrodynamic flow of Williamson fluid is considered. The flow is modelled by including Coriolis force and angle of inclination in the Navier-Stokes equation. By adopting a suitable similarity transformation, the system of governing partial differential equations is reduced to a system of ordinary differential equations which are solved using bvp4c solver in MATLAB. The simulations are depicted as graphs and it is found that velocity increases with increasing Coriolis force while it decreases as the magnetic field strength and inclination angle increases. Also, the local skin friction reduces as the rotation increases. Hence, to boost heat and mass transfer in the flow of fluid over a rotating inclined plate in a magnetic field, it is recommended that rotation should be increased and magnetic field strength should be reduced.

Read Full Article
BOOK-foundations-of-mathematical-analysis-and-semigroups-theory
BOOK - NULL CONTROLLABILITY OF DEGENERATE AND NON-DEGENERATE SINGULAR PARABOLIC