Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
The atom-bond connectivity (ABC) index of a graph \(G=(V,E)\) is defined as \(ABC(G)=\sum_{v _{i}v_{j} \in E}\sqrt{(d_{i}+d_{j}-2)/(d_{i}d_{j})}\), where \(d_{i}\) denotes the degree of vertex \(v_{i}\) of \(G\). Due to its interesting applications in chemistry, this molecular structure descriptor has become one of the most actively studied vertex-degree-based graph invariants. Many efforts were made towards the elementary problem of characterizing tree(s) with minimal ABC index, which remains open and was coined as the ABC index conundrum”. Up to date, quite a few significant results have been obtained. In the course of research computer search plays a non-negligible role. In the present paper we review the state of the art of the problem. In addition we intend to demonstrate that, repeating the procedure “searching – conjecturing – proving” can be an applicable paradigm to cope with elusive problems of extremal graph characterization.
Let \(G\) be a simple, finite and connected graph. A graph is said to be decomposed into subgraphs \(H_1\) and \(H_2\) which is denoted by \(G= H_1 \oplus H_2\), if \(G\) is the edge disjoint union of \(H_1\) and \(H_2\). Assume that \(G= H_1 \oplus H_2 \oplus \cdots \oplus H_k\) and if each (H_i\), \(1 \leq i \leq k\), is a path or cycle in \(G\), then the collection of edge-disjoint subgraphs of \(G\) denoted by \(\psi\) is called a path decomposition of \(G\). If each \(H_i\) is a path in \(G\) then \(\psi\) is called an acyclic path decomposition of \(G\). The minimum cardinality of a path decomposition of \(G\), denoted by \(\pi (G)\), is called the path decomposition number and the minimum cardinality of an acyclic path decomposition of \(G\), denoted by \(\pi_a(G)\), is called the acyclic path decomposition number of \(G\). In this paper, we determine path decomposition number for a number of graphs in particular, the Cartesian product of graphs. We also provided bounds for \(\pi(G)\) and \(\pi_a(G)\) for these graphs.
Let \(G\) be a simple, finite and connected graph. A graph is said to be decomposed into subgraphs \(H_1\) and \(H_2\) which is denoted by \(G= H_1 \oplus H_2\), if \(G\) is the edge disjoint union of \(H_1\) and \(H_2\). Assume that \(G= H_1 \oplus H_2 \oplus \cdots \oplus H_k\) and if each (H_i\), \(1 \leq i \leq k\), is a path or cycle in \(G\), then the collection of edge-disjoint subgraphs of \(G\) denoted by \(\psi\) is called a path decomposition of \(G\). If each \(H_i\) is a path in \(G\) then \(\psi\) is called an acyclic path decomposition of \(G\). The minimum cardinality of a path decomposition of \(G\), denoted by \(\pi (G)\), is called the path decomposition number and the minimum cardinality of an acyclic path decomposition of \(G\), denoted by \(\pi_a(G)\), is called the acyclic path decomposition number of \(G\). In this paper, we determine path decomposition number for a number of graphs in particular, the Cartesian product of graphs. We also provided bounds for \(\pi(G)\) and \(\pi_a(G)\) for these graphs.
The objective of the present study was to investigate and compare the efficacy, physiochemical equivalence and purity of API’s of different brands of cetirizine 2HCl tablets (10mg) with that of multinational brands available in local market of Lahore, Pakistan. The present work also provides awareness to allergy patients about most effective local brands with reasonable prices, without any health risk. Spectrophotometric method was used for chemical assay, TLC technique was subjected for the purity of API’s and physiochemical parameters was employed i.e; weight variation, hardness, friability, thickness, disintegration time and dissolution study as well as price fluctuation in PK rupees. The results of all physiochemical parameters and chemical assay were found to be within limit and meet to the pharmacopeial standards. TLC technique was developed to check the quality and purity of API, all the active ingredients showed the similar \(R_{f}\)-values without any impurity (0.38-0.39). From the test results and plots, it was observed and concluded that an economical and quality products can be prescribed for allergy patients whether they are manufactured by the local or multinational pharmaceutical companies without any health risk.
For an arborescence \(A_r\), a directed pathos total digraph \(Q=DPT(A_r)\) has vertex set \(V(Q)=V(A_r)\cup A(A_r)\cup P(A_r)\), = where \(V(A_r)\) is the vertex set, \(A(A_r)\) is the arc set, and \(P(A_r)\) is a directed pathos set of \(A_r\). The arc set \(A(Q)\) consists of the following arcs: \(ab\) such that \(a,b \in A(A_r)\) and the head of \(a\) coincides with the tail of \(b\); \(uv\) such that \(u,v \in V(A_r)\) and \(u\) is adjacent to \(v\); \(au\) \((ua)\) such that \(a\in A(A_r)\) and \(u \in V(A_r)\) and the head (tail) of \(a\) is \(u\); \(Pa\) such that \(a \in A(A_r)\) and \(P \in P(A_r)\) and the arc \(a\) lies on the directed path \(P\); \(P_iP_j\) such that \(P_i, P_j \in P(A_r)\) and it is possible to reach the head of \(P_j\) from the tail of \(P_i\) through a common vertex, but it is possible to reach the head of \(P_i\) from the tail of \(P_j\). For this class of digraphs we discuss the planarity; outerplanarity; maximal outerplanarity; minimally nonouterplanarity; and crossing number one properties of these digraphs. The problem of reconstructing an arborescence from its directed pathos total digraph is also presented.
In this paper, we use Riccati transformation technique to establish some new oscillation criteria for the second order nonlinear dynamic equation with damping on time scales $$(r(t)(x^\Delta(t))^\alpha)^\Delta-p(t)(x^\Delta(t))^\alpha+q(t)f(x(t))=0.$$ Our results not only generalize some existing results, but also can be applied to the oscillation problems that are not covered in literature. Finally, we give some examples to illustrate our main results.
In this work we have described the synthesis of Zinc Oxide nanoparticles through chemical and biological methods. For biological synthesis Aspargillus niger was used. The product obtained was characterized through different analytical techniques like XRD, SEM and EDX. The obtained results were matched with the literature. It was confirmed that the Zinc Oxide nanoparticles can also be prepared from Aspargillus niger.Which may be more ecofriendly and economical compared to other commonly used methods.
For an undirected graph \(G\), a zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum \(k\)-flow if the absolute values of edges are less than \(k\). We define the zero-sum flow number of \(G\) as the least integer \(k\) for which \(G\) admitting a zero sum \(k\)-flow. In this paper we gave complete zero-sum flow and zero sum number for octagonal grid, generalized prism and book graph.
Most of molecular structures have symmetrical characteristics. It inspires us to calculate the topological indices by means of group theory. In this paper, we present the formulations for computing the several distance-based topological indices using group theory. We solve some examples as applications of our results.
Topological indices are numerical numbers associated with a graph that helps to predict many properties of underlined graph. In this paper we aim to compute multiplicative topological indices of Circulant graph.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: