Open Journal of Mathematical Sciences (OMS)

Open Journal of Mathematical Sciences (OMS) 2523-0212 (online) 2616-4906 (Print) partially supported by National Mathematical Society of Pakistan is a single blind peer reviewed Open Access journal that publishes original research articles, review articles and survey articles related to Mathematics. Open access means that articles published in Open Journal of Mathematical Sciences are available online to the reader “without financial, legal, or technical barriers”. We publish both in print and online versions. Accepted paper will be published online immediately after it gets ready to publish. We publish one volume in the month of December in print form.

Latest Published Articles

Author(s): Temur Z. Kalanov1
1 Home of Physical Problems, Yozuvchilar (Pisatelskaya) 6a, 100128 Tashkent, Uzbekistan.
Abstract:

The critical analysis of the foundations of vector calculus and classical electrodynamics is proposed. Methodological basis of the analysis is the unity of formal logic and rational dialectics. The main results are the following statements: (1) a vector is a property of the motion and of the interaction of material objects, i.e., the concept of a vector is the concept of a physical property. Therefore, the concept of a vector is a general and abstract concept; (2) a vector is depicted in the form of an arrow (i.e., “straight-line segment with arrowhead”) in a real (material) coordinate system. A vector drawn (depicted) in a coordinate system does not have the measure “meter”. Therefore, a vector is a pseudo-geometric figure in a coordinate system. A vector is an imaginary (fictitious) geometric figure; (3) geometrical constructions containing vectors (as pseudo-geometric figures) and vector operations in a coordinate system are fictitious actions; (4) the scalar and vector products of vectors represent absurd because vectors (as abstract concepts, as fictional geometric figures that have different measures) cannot intersect at the material point of the coordinate system; (5) the concepts of gradient, divergence, and rotor as the basic concepts of vector analysis are a consequence of the main mathematical error in the foundations of differential and integral calculus. This error is that the definition of the derivative function contains the inadmissible operation: the division by zero; (6) Maxwell’s equations the main content of classical electrodynamics are based on vector calculus. This is the first blunder in the foundations of electrodynamics. The second blunder is the methodological errors because Maxwell’s equations contradict to the following points: (a) the dialectical definition of the concept of measure; (b) the formal-logical law of identity and the law of lack of contradiction. The logical contradiction is that the left and right sides of the equations do not have identical measures (i.e., the sides do not have identical qualitative determinacy). Thus, vector calculus and classical electrodynamics represent false theories.

Author(s): S. Mehrshad1
1 Faculty of Sciences, Zabol University of Zabol, Iran.
Abstract:

In this paper, we study some properties of induced topology by a uniform space generated by a family of ideals of a BCC-algebra. Also, by using Cauchy nets we construct a uniform space which is completion of this space.

Author(s): Omer Abdalrhman1, Afif Abdalmonem2, Shuangping Tao3
1College of Education, Shendi University, Shendi, River Nile State, Sudan.
2Faculty of Science, University of Dalanj, Dalanj, South kordofan, Sudan.
3College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, P.R. China.
Abstract:

In this paper, the boundedness of Calderón-Zygmund operators is obtained on Morrey-Herz spaces with variable exponents \(MK_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\) and several norm inequalities for the commutator generated by Calderó-Zygmund operators, BMO function and Lipschitz function are given.

Author(s): M. G. Sobamowo1, \(^1\), O. M. Kamiyo1, , A. A. Yinusa1, T. A. Akinshilo1
1Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria.
Abstract:

The present study is based on the nonlinear analysis of unsteady magnetohydrodynamics squeezing flow and heat transfer of a third grade fluid between two parallel disks embedded in a porous medium under the influences of thermal radiation and temperature jump boundary conditions are studied using Chebyshev spectral collocation method. The results of the non-convectional numerical solutions verified with the results of numerical solutions using fifth-order Runge-Kutta Fehlberg-shooting method and also the results of homotopy analysis method as presented in literature. The parametric studies from the series solutions show that for a suction parameter greater than zero, the radial velocity of the lower disc increases while that of the upper disc decreases as a result of a corresponding increase in the viscosity of the fluid from the lower squeezing disc to the upper disc. An increasing magnetic field parameter, the radial velocity of the lower disc decreases while that of the upper disc increases. As the third-grade fluid parameter increases, there is a reduction in the fluid viscosity thereby increasing resistance between the fluid molecules. There is a recorded decrease in the fluid temperature profile as the Prandtl number increases due to decrease in the thermal diffusivity of the third-grade fluid. The results in this work can be used to advance the analysis and study of the behaviour of third grade fluid flow and heat transfer processes such as found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, oil recovery applications etc.

Author(s): François Dubeau 1
1Département de Mathématiques Faculté des sciences, Université de Sherbrooke 2500, boul. de l’Université, Sherbrooke (Qc), Canada.
Abstract:

We present, in a way quite accessible to undergraduate and graduate students, some basic and important facts about conics: parabola, ellipse and hyperbola. For each conic, we start by its definition, then consider tangent line and obtain an elementary proof of the reflexion property. We study intersection of tangents. We obtain the orthopic set for orthogonal tangents: the directrix for parabola and the Monge’s circle for ellipse and hyperbola. For ellipse and hyperbola we also consider intersection of tangents for parallel rays at points of intersection with the conic. Those analysis lead to geometric methods to draw conics. Finally we get the directrices for ellipse and hyperbola by considering intersections of tangents at endpoints of a secant passing through a focus.

Author(s): O. Adedire1, J. N. Ndam1
1Department of Mathematics, University of Jos, Nigeria.
Abstract:

In this paper, we examine linear and nonlinear boundary sinks in compartments whose adjacent sides are separated with sieve partitions allowing transport of chemical species. The sieve partitions serve as boundary sinks of the system separating each compartment from the subsequent one. With assumption of unidirectional transport of chemical species, constant physical properties and same equilibrium constant, system of partial differential equations are derived. The spatial variables of the derived PDEs are discretized using Method of Lines (MOL) technique. The semi-discrete system formed from this technique produced a system of 105 ODEs which are solved using MATLAB solver ode15s. The results show that for strongly nonlinear boundary sinks, concentration profile maintains low profile in interconnected adjacent compartments. This suggests that as nonlinearity increases at the boundary, the concentration profile becomes increasingly low in subsequent compartments.

Author(s): Komi Agbokou1, Kossi Gneyou1, Kokou Tcharie1
1Laboratoire LAMMA Laboratory, Department of Mathematics, Faculty of Sciences, University of Lomé, Togo.
Abstract:

A state of health emergency has been decreed by the Togolese government since April 01 for a period of 3 months, with the introduction of a curfew which ended on June 9, following the first case of contamination of the corona Sars- Cov-2 in Togo, case registered on March 06, 2020. This first wave of contamination started from March 19. The data observed in Togo are cases tested positive and which are cured using a protocol based on the combination of hydroxychloroquine and azithromycin. This manuscript offers a forecast on the number of daily infections and its peak (or maximum), then the cumulative numbers of those infected with the covid’19 pandemic. The forecasts are based on evolution models which are well known in the literature, which consist in evaluating the evolution of the cumulative numbers of infected and a Gaussian model representing an estimate of the number of daily infections for this first wave of contamination. over a period of 8 months from the sample of observed data.

Author(s): Gabriel Obed Fosu1, Emmanuel Akweittey1, Albert Adu-Sackey2
1Department of Mathematics, Presbyterian University College, Ghana.
2Department of Applied Mathematics, Koforidua Technical University, Ghana.
Abstract:

During the early phase of Covid-19, the transmissibility of the coronavirus disease was estimated using the classical SIR and SEIR models. However, with the advent of some controlling measures in its informative stages, these classical compartmental models have been ameliorated to provide accurate insight of the coronavirus disease. The paper seeks to derive the basic reproductive formulas for these improved models using the matrix approach. These transmissibility equations detail the dynamics of the coronavirus disease for all phases of the pandemic; either the infected population is on lockdown or not; either infectious persons are quarantined or not; either a vaccination program has been rolled out or yet to be rolled out. With the availability of data, any of these transmissibility equations could be adopted to report on the endemicity of the coronavirus disease.

Author(s): Qi Liu1, Shaomo Zhuang1, Yongjin Li1
1Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Abstract:

We introduce the generalized von Neumann-Jordan constant of a quasi-Banach space \(X\). Also, the quasi-Hilbert characteristic is introduced. An attempt has been made to investigate the relationship between them. At the end, a characterization of uniformly non-square is given.

Author(s): Abalo Douhadji1, Yaovi Awussi2
1Department of Mathematics, University of Lomé, PObox 1515, Lomé, Togo.
2Department of Mathematics, Mathematics and Applications Laboratory, University of Lomé, PObox 1515, Lomé, Togo.
Abstract:

We study the foreign measures in general by proving all operations possibilities with their characteristic relation \( \perp \) and deduce that the set of foreign vector measures is a subset of bounded vector measures; stable par linear combination.