Search for Articles:

Open Journal of Discrete Applied Mathematics (ODAM)

The Open Journal of Discrete Applied Mathematics (ODAM) (2617-9687 Online, 2617-9679 Print) is an international peer-reviewed journal dedicated to publishing research in algorithmic and applied mathematics, as well as the applications of mathematics across science and technology. Contributions may include research articles, short notes, surveys, and research problems, providing a comprehensive platform for advancing knowledge in discrete and applied mathematics.

  • Open Access: ODAM follows the Diamond Open Access model—completely free for both authors and readers, with no APCs. Articles are made freely available online without financial, legal, or technical barriers.
  • Visibility: Accepted articles are published online immediately upon acceptance, ensuring broad accessibility. A printed version is released annually in December.
  • Rapid Publication: Editorial decisions are provided within 4 to 12 weeks of manuscript submission, with accepted articles published online promptly.
  • Scope: Focuses on research papers in algorithmic and applied mathematics, as well as applications of mathematics in science and technology. Includes research papers, short notes, surveys, and research problems.
  • Publication Frequency: One volume with three issues per year (April, August, December), with a printed version released in December.
  • Indexing: ROAD, Mathematical Reviews (MathSciNet), WorldCat, Scilit, Google Scholar
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Noha Mohammad Seyam1, Muhammad Faisal Nadeem2
1College of Applied Sciences Mathematical Sciences Department, Umm Al-Qura University, Makkah Saudi Arabia
2Department of Mathematics, COMSATS University Islamabad Lahore Campus, Lahore 54000 Pakistan
Abstract:

An edge irregular \(k\)-labeling of a graph \(G\) is a labeling of vertices of \(G\) with labels from the set \(\{1,2,3,\dots,k\}\) such that no two edges of \(G\) have same weight. The least value of \(k\) for which a graph \(G\) has an edge irregular \(k\)-labeling is called the edge irregularity strength of \(G\). Ahmad et. al. [1] showed the edge irregularity strength of some particular classes of Toeplitz graphs. In this paper we generalize those results and finds the exact values of the edge irregularity strength for some generalize classes of Toeplitz graphs.

Zaryab Hussain1, Muhammad Ahsan Binyamin2
1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China
2Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
Abstract:

The eccentric atom-bond sum-connectivity \(\left(ABSC_{e}\right)\) index of a graph \(G\) is defined as \(ABSC_{e}(G)=\sum\limits_{uv\in E(G)}\sqrt{\frac{e_{u}+e_{v}-2}{e_{u}+e_{v}}}\), where \(e_{u}\) and \(e_{v}\) represent the eccentricities of \(u\) and \(v\) respectively. This work presents precise upper and lower bounds for the \(ABSC_{e}\) index of graphs based on their order, size, diameter, and radius. Moreover, we find the maximum and minimum \(ABSC_{e}\) index of trees based on the specified matching number and the number of pendent vertices.

Rao Li1
1Dept. of Computer Science, Engineering, and Math University of South Carolina Aiken, Aiken, SC 29801
Abstract:

Let \(G = (V(G), E(G))\) be a graph with minimum degree at least \(1\). The inverse degree of \(G\), denoted \(Id(G)\), is defined as the sum of the reciprocals of degrees of all vertices in \(G\). In this note, we present inverse degree conditions for Hamiltonian and traceable graphs.

Johan Kok1
1Independent Mathematics Researcher, City of Tshwane, South Africa & Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India
Abstract:

This note presents some upper bounds for the size of the upper deg-centric grapg \(G_{ud}\) of a simple connected graph G. Amongst others, a result for graphs for which a compliant graph \(G\) has \(G_{ud} \cong \overline G\) is presented. Finally, results for size minimality in respect upper deg-centrication and minimum size of such graph \(G\) are presented.

Noha Mohammad Seyam1, Mohammed Ali Alghamdi2, Adnan Khalil3
1Department of Mathematics, Faculty of Science, Umm Al-Qura University, Makkah Saudi Arabia.
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
3Department Computer Sciences, Al-Razi Institute Saeed Park, Lahore Pakistan.
Abstract:

There are three different kinds of topological indices: spectrum-based, degree-based, and distance-based. We presented the \(K\)-swapped network for \(t\)-regular graphs in this study. We also computed various degree-based topological indices of the \(K\)-swapped network for \(t\)-regular graphs, eye, and \(n\)-dimensional twisted cube network. The metrics used to analyze the abstract structural characteristics of networks are called topological indices. We also calculate each of the aforementioned networks M-polynomials. A graph can be used to depict an interconnection network’s structure. The processing nodes in the network are represented by vertices, while the links connecting the processor nodes are represented by edges. We can quickly determine the diameter and degree between the nodes based on the graph’s tpology. A key component of graph theory are graph invariants, which identify the structural characteristics of networks and graphs. Furthermore doescribed by graph invariants are computer, social, and internet networks.

Saad Tobaili1, Haifa Ahmed2, Mohammed Alsharafi3
1Department of Mathematics, Faculty of Science, Hadhramout University, Mukalla, Yemen.
2Department of Mathematics, Faculty of Education, Art and Science, Aden University, Aden, Yemen.
3Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
Abstract:

Shadi I.K et al. [1] introduced the edge hub number of graphs. This work extends the concept to fuzzy graphs. We derive several properties of edge hub number of fuzzy graphs and establish some relations that connect the new parameter with other fuzzy graph parameters. Also, some bounds of such a parameter are investigated. Moreover, we provide empirical evidence examples to elucidate the behavior and implications of edge hub number of fuzzy graph parameters.

Carlos A. Alfaro1, Christian Rubio-Montiel2, Adrián Vázquez Ávila3
1Banco de México, Ciudad de México, México
2División de Matemáticas e Ingeniería, FES Acatlán, Uiversidad Nacional Autónoma de México, Ciudad de México, México
3Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Querétaro, México
Abstract:

In this paper, we give a relationship between the covering number of a simple graph \(G\), \(\beta(G)\), and a new parameter associated to \(G\), which is called 2-degree-packing number of \(G\), \(\nu_2(G)\). We prove that \[\lceil \nu_{2}(G)/2\rceil\leq\beta(G)\leq\nu_2(G)-1,\] for any simple graph \(G\), with \(|E(G)|>\nu_2(G)\). Also, we give a characterization of connected graphs that attain the equalities.

Syed Ahtsham Ul Haq Bokhary1, Shehr Bano1
1Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan.
Abstract:

Let \(A\) and \(B\) be two graph and \(P(A,z)\) and \(P(B,z)\) are their chromatic polynomial, respectively. The two graphs \(A\) and \(B\) are said to be chromatic equivalent denoted by \( A \sim B \) if \(P(A,z)=P(B,z)\). A graph \(A\) is said to be chromatically unique(or simply \(\chi\)- unique) if for any graph \(B\) such that \(A\sim B \), we have \(A\cong B\), that is \(A\) is isomorphic to \(B\). In this paper, the chromatic uniqueness of a new family of \(6\)-bridge graph \(\theta(r,r,s,s,t,u)\) where \(2\leq r\leq s \leq t\leq u\) is investigated.

Zhen Lin1
1School of Mathematics and Statistics, Qinghai Normal University, Xining, 810008, Qinghai, China
Abstract:

In mathematical chemistry, a large number of topological indices are used to predict the physicochemical properties of compounds, especially in the study of quantitative structure-proerty relationship (QSPR).
However, many topological indices have almost the same predictive ability. In this paper, we focus on how to use fewer topological indices to predict the physicochemical properties of compounds through the QSPR analysis of connectivity indices of benzene hydrocarbons.

Emre Sevgi1, Gül Özkan Kizilirmak, Serife Büyükköse
1Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey.
Abstract:

In this paper, we obtain the bounds for the Laplacian eigenvalues of a weighted graph using traces. Then, we find the bounds for the Kirchhoff and Laplacian Estrada indices of a weighted graph. Finally, we define the Laplacian energy of a weighted graph and get the upper bound for this energy.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more