Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In this research article, the authors introduce the refinements of some special inequalities, like Lah-Ribarič type, Giaccardi, and Petrović’s inequalities. Also, the authors define Fejér, Giaccardi, and Petrović’s types of inequalities for different classes of convex functions.
In this study, an approximate solution of the Sitnikov problem was investigated using fourth-order Runge – Kutta method. We confirmed the periodicity and the symmetric nature of the orbits. The various values of eccentricities were obtained which showed that at eccentricity e = 0, the orbit moves in a circular shape and otherwise when e < 0. Also at every values of e, we found the numerical results which we demonstrated by simulations using MATCAD which showed that the range for the search of eccentricities can be narrowed down at different values of e, different sinusoidal frequencies were obtained.
Predation models have come close to modelling dynamic and complex economic factors despite its simplistic criticism. Based on Goodwin’s predator-prey framework, this study modelled the dynamics between employment rate and wage share of Ghana’s national output. Empirical data simulations revealed clear cyclical patterns in employment rates and wage shares, reflecting the dynamics in Goodwin’s class struggle theory. The employment rate and wage share exhibited a symbiotic relationship, where changes in one variable significantly influenced the other. The analysis further revealed that although both employment rate and wage share periodically declined, these variables were never annihilated indicative that the economy was resilient. Sensitivity analysis also demonstrated the robustness of the model, showing consistent patterns despite variations in initial conditions. After subjecting the model to stability test, the study showed that despite the economic fluctuations during the study period, the economy was generally stable mathematically, with a projected economic growth assured.
A novel topological index, the Sombor index, has been proposed by Ivan Gutman in a recent paper [1]. Motivated by this novel index, we study the new variants of Sombor index and to examine the correlation of newly introduced topological indices we have computed the values of these indices by taking all possible trees on 10 vertices. Here in this paper, we derive explicit formulae for the Sombor index of various nanostructures. These include hexagonal parallelogram \( P(\alpha, \beta) \)-nanotubes, triangular benzenoid \( G_{\alpha} \), and zigzag-edge coronoid fused with starphene nanotubes \( ZCS(k,\alpha,\beta) \), where \( k, \alpha, \beta \) are natural numbers. We also compute the Sombor index for dominating derived networks \( D_{1}, D_{2}, D_{3} \), as well as for various dendrimers such as Porphyrin Dendrimer, Ninc-Porphyrin Dendrimer, Propyl Ether Imine Dendrimers, and Polyamidoamin (PAMAM) Dendrimer. Additionally, we examine Polyamidoamin dendrimers (\( PD_{1}, PD_{2}, DS_{1} \)) and linear polyomino chains like \( L_{\alpha} \), \( Z_{\alpha} \), \( B^{1}_{\alpha}(\alpha \geq 3) \), \( B^{2}_{\alpha}(\alpha \geq 4) \). Finally, we consider benzenoid systems with different shapes, including triangular, hourglass, and jagged-rectangle configurations. By computing the Sombor index for these nanostructures, we provide a comprehensive analysis of their topological properties.
The hub set measures the connectivity of any nodes in graphs and the determination of it is found to be NP-complete. This paper deduces several properties and characterize of one such hub parameter, the doubly connected hub number for its value equal to 1 and 2. Moreover, a few bounds and Nordhaus-Gaddum type inequalities are discussed.
Let \( V(G) = \{v_1, v_2, \ldots, v_n\} \) be the vertex set and \( E(G) = \{e_1, e_2, \ldots, e_m\} \) be the edge set of a graph \( G \). The Seidel adjacency matrix of a graph \( G \) is defined as \( S(G) = [s_{ij}] \) of order \( n \times n \), in which \( s_{ij} = -1 \) if \( v_i \) is adjacent to \( v_j \), \( s_{ij} = 1 \) if \( v_i \) is not adjacent to \( v_j \) and \( s_{ii} = 0 \). We introduce here the \( (-1,1) \)-incidence matrix of \( G \) as \( B_S(G) = [c_{ij}] \) of order \( n \times m \), in which \( c_{ij} = -1 \) if \( v_i \) is incident to \( e_j \) and \( c_{ij} = 1 \) if \( v_i \) is not incident to \( e_j \). Further we explore properties of \( B_S(G) \) and of its transpose.
It is well known that positive Green’s operators are not necessarily positivity preserving. This result is important, because many physical problems require positivity in their solutions in order to make sense. In this paper we investigate the matter of just how far from being positivity preserving a positive Green’s operator can be. In particular, we will see that there exists positive Green’s operators that takes some positive functions to functions with negative mean values. We will also identify a broad class of Green’s operators that are not necessarily positivity preserving but have properties related to positivity preservation that one expects from positivity preserving Green’s operators. Finally, we will compare the results contained in this paper with those that already exist in the literature on the subject.
In this article, we establish new integral inequalities involving sub-multiplicative functions. We first derive several inequalities of primitive type, followed by new inequalities of the convolution product type. We also obtain integral bounds for functions evaluated on the product of two variables. Finally, we study double integral inequalities and their variations. Simple examples are used to illustrate the theory. The understanding of integral inequalities under submultiplicative assumptions is thus deepened, and some new ideas for further research in mathematical analysis are provided.
The current study focuses on the investigation and develop of a new approach called Hussein–Jassim method (HJM), suggested lately by Hassan et al.; specifically, we investigate its applicability to fractional ordinary delay differential equations in the Caputo fractional sense. Several examples are offered to demonstrate the method’s reliability. The results of this study demonstrate that the proposed method is highly effective and convenient for solving fractional delay differential equations.
We define and study the Stockwell transform \(\mathscr{S}_g\) associated with the Whittaker operator
\[\Delta_{\alpha}:=-\frac{1}{4}\left[x^2\frac{\mbox{d}^2}{\mbox{d}x^2}+(x^{-1}+(3-4\alpha)x)\frac{\mbox{d}}{\mbox{d}x}\right],\]
and prove a Plancherel theorem. Moreover, we define the localization operators \(L_{g,\xi}\) associated to this transform. We study the boundedness and compactness of these operators and establish a trace formula. Finally, we give a Shapiro-type uncertainty inequality for the modified Whittaker-Stockwell transform \(\mathscr{S}_g\).
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: