Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In recent decades, a wide range of Hardy-Hilbert-type integral inequalities have been established. This article focuses on a one-parameter result introduced by Waadallah Tawfeeq Sulaiman in 2010, which has a unique structure: the double integral involves a power-sum of the variables, as well as a technical power-minimum. The sharp constant factor is also elegantly expressed in terms of the beta function. However, the parameter involved is subject to restrictions on its values. In this article, we refine the inequality by removing this restriction and addressing a theoretical gap in the original proof to yield a sharper result. We provide a thorough, step-by-step proof and demonstrate how this new result can be used to derive additional variants and extensions.
We study the Abel-type family \(y'=C\,y^r(1-y)^s\) under a parity-driven mapping of \((r,s)\), which yields symmetric dynamics for odd \(k\) and asymmetric, potentially stiff dynamics for even \(k\). We correct the normalization by peaking at the true maximizer \(y^\star=r/(r+s)\) and provide the analytic Jacobian \(g'(y)\) for implicit solvers. A matched-accuracy benchmarking protocol sweeps rtol
/atol
and reports global errors against ultra-tight references (separable/explicit for odd \(k\), Radau for even \(k\)), alongside wall time, \(nfev\), \(njev\), linear-solve counts, rejected steps, and step-size histories. Stiffness is quantified through the proxy \(\tau(t)=1/\lvert g'(y(t))\rvert\) and correlated with step-size adaptation; trajectories are constrained to \(y\in[0,1]\) via terminal events. Across tolerances, DOP853 and LSODA are strong all-rounders in non-stiff regimes, while Radau/BDF dominate when asymmetry and proximity to multiple roots induce stiffness; observed orders align with nominal ones under matched error. The study clarifies how parity and nonlinearity govern solver efficiency for polynomial nonlinearities and provides full environment details and code for reproducibility.
Let \(G\) be a graph of order \(n\) and size \(m\), with adjacency matrix eigenvalues \(\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n\). The energy of \(G\), denoted by \(\mathcal{E}(G)\), is defined as the sum of the absolute values of its eigenvalues. A classical upper bound on the energy, originally established by McClelland [1], states that \(\mathcal{E}(G) \leq \sqrt{2mn}\,.\) In this paper, we refine the spectral analysis of graph energy by deriving an exact analytical expression relating \(\mathcal{E}(G)\) to the variance of the vector of absolute eigenvalues \(x = (|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|)\,.\) Specifically, we prove that \(\mathcal{E}(G) = \sqrt{2mn – n^2 \operatorname{Var}(x)},\) providing a more precise and quantitative spectral characterization of graph energy. As an application, this identity allows us to derive improved lower bounds for \(\mathcal{E}(G)\), thereby strengthening and generalizing previously known inequalities. Furthermore we conjecture that for any non-singular graph \(G\) of order \(n\), \(\mathcal{E}(G) \geq 2 \sqrt{\langle d \rangle (n-1)},\) where \(\langle d \rangle = 2m/n\) is the average vertex degree of \(G\). Equality holds if and only if \(G \cong K_n\).
First, this paper provides some approximation and estimation type results for some moments of the Gauss function, motivated by the fact that the moments of even orders \(n=2l,\ l\in \mathbb{N}\mathrm{=}\mathrm{\{}0,1,\dots \}\) of the function \(exp\left(-t^2\right)\) on bounded intervals . Second, the problem of asymptotic behavior of the sequence of all orders for the same function on any interval \(\left[0,b\right]\subseteq \left[0,{1}/{\sqrt{2}}\right]\) is studied and solved. Here the point is using Jensen inequality. Third, the problem of asymptotic behavior of the sequence of all orders for the same function on any interval \(\left[0,b\right]\subset \left[0,+\infty \right)\) is deduced, via elements of complex analysis (Vitali’s theorem). The convergence holds uniformly on compact subsets of the complex plane. Fourth, the asymptotic behavior of the sequence of all moments on \(\left[0,1\right],\ \)as \(n\to \infty ,\) for an arbitrary function \(f\in C\left(\left[0,1\right]\right)\) is determined precisely, by means of Korovkin’s approximation theorem. Consequently, a similar result for complex analytic functions is deduced, using Vitali’s theorem. This is the fifth aim of the paper.
A discrete-time prey-predator system of Leslie-Gower type with harvesting is considered in this paper. The system is first discretized using the Forward-Euler method. The topology and stability of the fixed points of this method are discussed using period-doubling and Neimark-Sacker bifurcation analysis. Secondly, a non-standard finite difference scheme of the same system is presented. We have shown the permanence and dynamical consistency of this scheme. It has been shown that our non-standard finite difference scheme is the best scheme for this system, according to Mickens. Using the center manifold theorem, the normal form of the Neimark-Sacker bifurcation has been derived. Numerical simulations are provided, using a computer package, to illustrate the consistency of the theoretical results. Finally, chaos control techniques have been applied to control the chaotic dynamics of the system.
This paper investigates the application of the Hardy-Littlewood-Sobolev inequality to analyze the global existence of solutions for a wave equation incorporating distributed delay effects and Hartree-type nonlinearities under suitable analytical conditions.
We study a coercive quasi-variational inequality (QVI) system and propose a generalized Schwarz method using finite element approximations. The discrete solution is iteratively constructed through monotone upper and lower sequences, and its convergence is rigorously established in the \(\mathfrak{L}^\infty\) norm. This framework ensures stability, geometric convergence, and efficient computation on overlapping subdomains.
Let \(\left( H;\left\langle \cdot ,\cdot \right\rangle \right)\) be a complex Hilbert space. Denote by \(\mathcal{B}\left( H\right)\) the Banach \(C^{\ast }\) -algebra of bounded linear operators on \(H\). For \(A\in \mathcal{B}\left( H\right)\) we define the modulus of \(A\) by \(\left\vert A\right\vert :=\left( A^{\ast }A\right) ^{1/2}.\) We say that the continuous function \(B:\left[ a,b \right] \rightarrow \mathcal{B}\left( H\right)\) is square modulus convex (concave) on \(\left[ a,b\right]\) if \[\begin{equation*} \left\vert B\left( \left( 1-t\right) u+tv\right) \right\vert ^{2}\leq \left( \geq \right) \left( 1-t\right) \left\vert B\left( u\right) \right\vert ^{2}+t\left\vert B\left( v\right) \right\vert ^{2}, \end{equation*}\] in the operator order of \(\mathcal{B}\left( H\right) ,\) for all \(u,\) \(v\in \left[ a,b\right]\) and \(t\in \left[ 0,1\right] .\) In this paper, we show among others that, if \(B:\left[ m,M\right] \subset \mathbb{R\rightarrow } \mathcal{B}\left( H\right)\) is square modulus convex on \(\left[ m,M\right]\) and \(f:\Omega \rightarrow \left[ m,M\right]\) so that \(f,\) \(\left\vert B\circ f\right\vert ^{2},\) \(Re\left( \left( B\circ f\right) ^{\ast }\left( B^{\prime }\circ f\right) \right) ,\) \(fRe\left( \left( B\circ f\right) ^{\ast }\left( B^{\prime }\circ f\right) \right) \in L_{w}\left( \Omega ,\mu ,\mathcal{B}\left( H\right) \right) ,\) where \(w\geq 0\) \(\mu\) -a.e. on \(\Omega\) with \(\int_{\Omega }wd\mu =1,\) then \[0 \leq \int_{\Omega }w\left( s\right) \left\vert B\circ f\right\vert ^{2}d\mu \left( s\right) -\left\vert B\left( \int_{\Omega }wfd\mu \right) \right\vert ^{2}\] \[\qquad\qquad\qquad~\qquad\qquad \leq \frac{1}{2}\left( M-m\right) \left\Vert \left( Re\left( \left( B\left( M\right) \right) ^{\ast }B_{-}^{\prime }\left( M\right) \right) – Re\left( \left( B\left( m\right) \right) ^{\ast }B_{+}^{\prime }\left( m\right) \right) \right) \right\Vert .\] The discrete versions are also provided.
This work advances the stability theory of fractional differential equations by establishing superstability criteria for a significant class of problems involving the Caputo-Katugampola derivative. Utilizing a generalized Taylor series as a foundational tool, we prove that these equations exhibit superstable behavior under specific conditions. Our results generalize a wide range of existing stability theorems, creating a unified framework that encompasses systems governed by the Caputo fractional derivative as special cases of the more general Katugampola operator.
This paper examine new versions of the Hermite-Hadamard (H-H) inequality in the context of \((p,q)-h\) integrals on finite intervals. Using the properties of convex and differentiable functions, we derive generalized inequalities that consolidate and generalize a number of existing results in quantum calculus. Specifically, the presented approach offers new implicit inequalities whose special cases result in well-known findings for \((p,q)-, (q,h)\)- and \(q\)-integrals, previously found in recent research. The newly established results not just recover and extend known inequalities but also bring further insights into convexity structure in the context of post-quantum calculus. Such contributions yet again enrich the current advancement of integral inequalities within fractional and quantum analysis, with possible uses in optimization, theory of approximation, and related topics.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: