The Open Journal of Mathematical Analysis (OMA) ISSN: 2616-8103 (Print), 2616-8111(Online) is an international research journal dedicated to the publication of original and high quality research papers that treat the mathematical analysis in broad and abstract settings. To ensure fast publication, editorial decisions on acceptance or otherwise are taken within 4 to 12 weeks (three months) of receipt of the paper.
Accepted articles are immediately published online as soon as they are ready for publication. There is one volume containing two issues per year. The issues will be finalized in June and December of every year. The printed version will be published in December of every year. The journal will also publish survey articles giving details of research progress made during the last three decades in a particular area.
In this paper, we give characterizations of separation criteria for bitopological spaces via \(ij\)-continuity. We show that if a bitopological space is a separation axiom space, then that separation axiom space exhibits both topological and heredity properties. For instance, let \((X, \tau_{1}, \tau_{2})\) be a \(T_{0}\) space then, the property of \(T_{0}\) is topological and hereditary. Similarly, when \((X, \tau_{1}, \tau_{2})\) is a \(T_{1}\) space then the property of \(T_{1}\) is topological and hereditary. Next, we show that separation axiom \(T_{0}\) implies separation axiom \(T_{1}\) which also implies separation axiom \(T_{2}\) and the converse is true.
In this paper, we present the notion of generalized \(F\)-expansive mapping in complete rectangular metric spaces and study various fixed point theorems for such mappings. The findings of this paper, generalize and improve many existing results in the literature.
In this paper, we precise the hyper order of solutions for a class of higher order linear differential equations and investigate the exponents of convergence of the fixed points of solutions and their first derivatives for the second order case. These results generalize those of Nan Li and Lianzhong Yang and of Chen and Shon.
The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \(s > \frac{1}{4}\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \([k; Z]\)-multiplier norm method developed by Terence Tao.
In this paper, we give characterizations of orthogonality conditions in certain classes of normed spaces. We first consider Range-Kernel orthogonality in norm-attainable classes then we characterize orthogonality conditions for Jordan elementary operators.
Copulas played a key role in numerous areas of statistics over the last few decades. In this paper, we offer a new kind of trigonometric bivariate copula based on power and cosine functions. We present it via analytical and graphical approaches. We show that it may be used to create a new bivariate normal distribution with interesting shapes. Subsequently, the simplest version of the suggested copula is highlighted. We discuss some of its relationships with the Farlie-Gumbel-Morgensten and simple polynomial-sine copulas, establish that it is a member of a well-known semi-parametric family of copulas, investigate its dependence domains, and show that it has no tail dependence.
Recently, many extensions of some special functions are defined by using the extended Beta function. In this paper, we introduce a new generalization of extended Gegenbauer polynomials of two variables by using the extended Gamma function. Some properties of these generalized polynomials such as integral representation, recurrence relation and generating functions are obtained.
In this paper, a hybrid of Finite difference-Simpson’s approach was applied to solve linear Volterra integro-differential equations. The method works efficiently great by reducing the problem into a system of linear algebraic equations. The numerical results shows the simplicity and effectiveness of the method, error estimation of the method is provided which shows that the method is of second order convergence.
In the present paper, we define a class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.
In this paper, the reduced differential transform method (RDTM) is applied to solve fuzzy nonlinear partial differential equations (PDEs). The solutions are considered as infinite series expansions which converge rapidly to the solutions. Some examples are solved to illustrate the proposed method.