Open Journal of Mathematical Sciences (OMS) 2523-0212 (online) 2616-4906 (Print) partially supported by National Mathematical Society of Pakistan is a single blind peer reviewed Open Access journal that publishes original research articles, review articles and survey articles related to Mathematics. Open access means that articles published in Open Journal of Mathematical Sciences are available online to the reader “without financial, legal, or technical barriers”. We publish both in print and online versions. Accepted paper will be published online immediately after it gets ready to publish. We publish one volume in the month of December in print form.
When mathematical models of biological phenomena deal with an unknown parameter, it is often assumed that such a parameter follows a normal distribution. This introduces a symmetry assumption into the model. The purpose of this paper is to investigate and quantify the effect of asymmetry on model prediction. We introduce an asymmetry into a model of sexual conflict and toxin allocation by replacing a normal distribution by a shifted beta distribution. This way, we can naturally consider a large family of continuously changing distributions. We isolate the effect of skewness on the model prediction and demonstrate that in most cases, increasing skewness causes a slight increase in optimal toxicity allocation. We conclude that overall, the effect of the skewness is much smaller than the effect of the mean. In fact, for the particular model we studied, skewness does not seem to affect qualitative predictions.
In this paper, the study identified existence regularity of a random attractor for the stochastic dynamical system generated by non-autonomous strongly damping wave equation with linear memory and additive noise defined on \(\mathbb{R}^{n}\). First, to prove the existence of the pullback absorbing set and the pullback asymptotic compactness of the cocycle in a certain parameter region by using tail estimates and the decomposition technique of solutions. Then it proved the existence and uniqueness of a random attractor.
We study analytical solutions of a bi-dimensional low-mass gaseous disc slowly rotating around a central mass and submitted to small radial periodic perturbations. Hydrodynamics equations are solved for the equilibrium and perturbed configurations. A wave-like equation for the gas-perturbed specific mass is deduced and solved analytically for several cases of exponents of the power law distributions of the unperturbed specific mass and sound speed. It is found that, first, the gas perturbed specific mass displays exponentially spaced maxima, corresponding to zeros of the radial perturbed velocity; second, the distance ratio of successive maxima of the perturbed specific mass is a constant depending on disc characteristics and, following the model, also on the perturbation’s frequency; and, third, inward and outward gas flows are induced from zones of minima toward zones of maxima of perturbed specific mass, leading eventually to the possible formation of gaseous annular structures in the disc. The results presented may be applied in various astrophysical contexts to slowly rotating thin gaseous discs of negligible relative mass, submitted to small radial periodic perturbations.
This paper aims to present Hermite-Hadamard type inequalities for a new class of functions, which will be denoted by \(Q_m^{h,g}(F;I)\) an and called class of quasi \(F-(h,g;m)\)-convex functions defined on interval \(I\). Many well known classes of functions can be recaptured from this new quasi convexity in particular cases. Also, several publish results are obtained along with new kinds of inequalities.
We provide a semi-local convergence analysis of a seventh order four step method for solving nonlinear problems. Using majorizing sequences and under conditions on the first derivative, we provide sufficient convergence criteria, error bounds on the distances involved and uniqueness. Earlier convergence results have used the eighth derivative not on this method to show convergence. Hence, limiting its applicability.
Squares of odd index Fibonacci polynomials are used to define a new function \(\Phi\left(10^{n}\right)\) to approximate the number \(\pi\left(10^{n}\right)\) of primes less than \(10^{n}\). Multiple of 4 index Fibonacci polynomials are further used to define another new function \(\Psi\left(10^{n}\right)\) to approximate the number \(\Delta\left(\pi\left(10^{n}\right)\right)\) of primes having \(n\) digits and compared to a third function \(\Psi’\left(10^{n}\right)\) defined as the difference of the first function \(\Phi\left(10^{n}\right)\) based on odd index Fibonacci polynomials. These three functions provide better approximations of \(\pi\left(10^{n}\right)\) than those based on the classical \(\left(\frac{x}{log\left(x\right)}\right)\), Gauss’ approximation \(Li\left(x\right)\), and the Riemann \(R\left(x\right)\) functions.
We show that Euler’s relation and the Taxi-Cab relation are both solutions of the same equation. General solutions of sums of two consecutive cubes equaling the sum of two other cubes are calculated. There is an infinite number of relations to be found among the sums of two consecutive cubes and the sum of two other cubes, in the form of two families. Their recursive and parametric equations are calculated.
This study introduces theorems concerning matrix products, which delineate the transformations of sequences or series into other sequences or series, ensuring either the preservation of limits or the guarantee of convergence. Previous literature has explored the properties of matrices facilitating transformations between sequences, series, and their combinations, with detailed insights available in references [1,2,3].
The concept of weak UP-algebras (shortly wUP-algebra) is an extension of the notion of UP-algebras introduced in 2021 by Iampan and Romano. In this report, an effective extension of a (weak) UP-algebra to a wUP-algebra is created. In addition to the previous one, the concept of atoms in wUP-algebras is introduced and their important properties are registered. Finally, the concept of wUP-filters in wUP-algebras was introduced and its connections with other substructures in wUP-algebras were analyzed.
In normed spaces, Birkhoff orthogonality and isosceles orthogonality can be used to characterize space structures, and many scholars have introduced geometric constants to quantitatively describe the relationship between these two types of orthogonality. This paper introduces a new orthogonal relationship – Skew orthogonality – and proposes a new geometric constant to measure the “distance” of difference between skew orthogonality and Birkhoff orthogonality in normed spaces. In the end, we provide some examples of specific spaces.