Open Journal of Discrete Applied Mathematics (ODAM)

The aim of Open Journal of Discrete Applied Mathematics (ODAM) (2617-9687 Online, 2617-9679 Print) is to bring together research papers in different areas of algorithmic and applied mathematics as well as applications of mathematics in various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. To ensure fast publication, editorial decisions on acceptance or otherwise are taken within 4 to 12 weeks (three months) of receipt of the paper.

Accepted articles are immediately published online as soon as they are ready for publication. There is one volume containing three issues per year. The issues will be finalized in April, August, and December of every year. The printed version will be published in December of every year.

Latest Published Articles

Author(s): Phillip Mafuta1,2, Josiah Mushanyu3,2
1Department of Mathematics and Applied Mathematics IB74, University of the Free State, Bloemfontein, South Africa
2Department of Mathematics and Computational Sciences, University of Zimbabwe, Harare, Zimbabwe
3Department of Computing, Mathematical and Statistical Sciences, University of Namibia, Windhoek, Namibia
Abstract:

A number of results on claw-free, paw-free graphs have been presented in the literature. Although the proofs of such results are elegant, sound and valid, it has gone unnoticed that all the results about claw-free, paw-free graphs in the literature are a consequence of a result by Olariu [1]. The note, apart from covering the aforementioned gap, also provides an alternate proof to a result by Faudree and Gould found in [2] in that, an unnoticed consequence resulted in the characterization of claw-free, paw-free graphs.

Author(s): Rikio Ichishima1, Francesc-Antoni Muntaner-Batle2
1Department of Sport and Physical Education, Faculty of Physical Education, Kokushikan University, 7-3-1 Nagayama, Tama-shi, Tokyo 206-8515, Japan.
2Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment, The University of Newcastle, NSW 2308 Australia.
Abstract:

A graph \(G\) is said to be super edge-magic if there exists a bijective function \(f:V\left(G\right) \cup E\left(G\right)\rightarrow \left\{1, 2, \ldots , \left\vert V\left( G\right) \right\vert +\left\vert E\left( G\right) \right\vert \right\}\) such that \(f\left(V \left(G\right)\right) =\left\{1, 2, \ldots , \left\vert V\left( G\right) \right\vert \right\}\) and \(f\left(u\right) + f\left(v\right) + f\left(uv\right)\) is a constant for each \(uv\in E\left( G\right)\). In this paper, we study the super edge-magicness of graphs of order \(n\) with degree sequence \(s:4, 2, 2, \ldots, 2\). We also investigate the super edge-magic properties of certain families of graphs. This leads us to propose some open problems.

Author(s): Tricia Muldoon Brown1
1Department of Mathematical Sciences, Georgia Southern University, Savannah, GA, U.S.A.
Abstract:

Coronoids are nice chemical structures that may be represented mathematically in the planar hexagonal lattice. They have been well-studied both for their chemical properties and also their enumerative aspects. Typical approaches to the latter type of questions often include classification and algorithmic techniques. Here we study one simple class of coronoids called hollow hexagons. Notably, hollow hexagons may be represented with a collection of partitions on the set \(\{2,3,4,6\}\). The hollow hexagons are used to classify another family of primitive coronoids, which we introduce here, called lattice path coronoids. Techniques from lattice path enumeration are used to count these newly-defined structures within equivalence classes indexed by enclosing hollow hexagons.

Author(s): Isaac Owino Okoth1
1Department of Pure and Applied Mathematics, Maseno University, Maseno, Kenya.
Abstract:

A \(2\)-noncrossing tree is a rooted tree drawn in the plane with its vertices (colored black or white) on the boundary of a circle such that the edges are line segments that do not intersect inside the circle and there is no black-black ascent in any path from the root. A rooted tree is said to be increasing if the labels of the vertices are increasing as one moves away from the root. In this paper, we use generating functions and bijections to enumerate \(2\)-noncrossing increasing trees by the number of blacks vertices and by root degree. Bijections with noncrossing trees, ternary trees, 2-plane trees, certain Dyck paths, and certain restricted lattice paths are established.

Author(s): Johan Kok1,2
1Independent Mathematics Researcher, City of Tshwane, South Africa
2Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India.
Abstract:

This paper introduces the new notion of total chromatic vertex stress of a graph. Results for certain tree families and other \(2\)-colorable graphs are presented. The notions of chromatically-stress stability and chromatically-stress regularity are also introduced. New research avenues are also proposed.

Author(s): Italo Dejter1
1Department of Mathematics, University of Puerto Rico, San Juan, Puerto Rico.
Abstract:

Coloring the arcs of biregular graphs was introduced with possible applications to industrial chemistry, molecular biology, cellular neuroscience, etc. Here, we deal with arc coloring in some non-bipartite graphs. In fact, for \(1<k\in\mathbb{Z}\), we find that the odd graph \(O_k\) has an arc factorization with colors \(0,1,\ldots,k\) such that the sum of colors of the two arcs of each edge equals \(k\). This is applied to analyzing the influence of such arc factorizations in recently constructed uniform 2-factors in \(O_k\) and in Hamilton cycles in \(O_k\) as well as in its double covering graph known as the middle-levels graph \(M_k\).

Author(s): Mitesh J. Patel1, Kajal S. Baldaniya2, Ashika Panicker1
1Department of Mathematics, Tolani College of Arts and Science, Adipur- Kachchh, Gujarat – INDIA.
2Department of Mathematics, Gajwani Institute of Science and Technology, Adipur- Kachchh, Gujarat – INDIA.
Abstract:

Let \(G\) be a graph with \(n\) vertices. The second Zagreb energy of graph \(G\) is defined as the sum of the absolute values of the eigenvalues of the second Zagreb matrix of graph \(G\). In this paper, we derive the relation between the second Zagreb matrix and the adjacency matrix of graph \(G\) and derive the new upper bound for the second Zagreb energy in the context of trace. We also derive the second Zagreb energy of \(m-\)splitting graph and \(m-\)shadow graph of a graph.

Author(s): Ivan Gutman1, Izudin Redžepović2, Boris Furtula1
1Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
2State University of Novi Pazar, 36300 Novi Pazar, Serbia
Abstract:

The Sombor index (\(SO\)) and the modified Sombor index (\(^mSO\)) are two closely related vertex-degree-based graph invariants. Both were introduced in the 2020s, and have already found a variety of chemical, physicochemical, and network-theoretical applications. In this paper, we examine the product \(SO \cdot {^mSO}\) and determine its main properties. It is found that the structure-dependence of this product is fully different from that of either \(SO\) or \(^mSO\). Lower and upper bounds for \(SO \cdot {^mSO}\) are established and the extremal graphs are characterized. For connected graphs, the minimum value of the product \(SO \cdot {^mSO}\) is the square of the number of edges. In the case of trees, the maximum value pertains to a special type of eclipsed sun graph, trees with a single branching point.

Author(s): Gerhard Kling1
1Business School, University of Aberdeen, Aberdeen, UK
Abstract:

Using coalescence and cones, this study defines three types of graphs formed by amalgamating vertices of disjoint unions of complete graphs. The three types include the cone over a disjoint union of two complete graphs (C1), the cone over a disjoint union of \(k\) complete graphs (C2), and the \(l\) cone over a disjoint union of two complete graphs (C3). Coalescence of complete graphs (C1, C3) and the \(l\) cone (C3) are determined by their Laplacian spectra, a novel finding. Their Laplacian spectra reveal the size of the vertex cutset. Applications include the analysis of corporate networks, where individuals form coalescence of complete graphs through joint membership of two or more company boards.

Author(s): Adrián Vázquez-Ávila1
1Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Querétaro, México
Abstract:

A famous conjecture of Ryser states that any \(r\)-partite set system has transversal number at most \(r-1\) times their matching number. This conjecture is only known to be true for \(r\leq3\) in general, for \(r\leq5\) if the set system is intersecting, and for \(r\leq9\) if the set system is intersecting and linear. In this note, we deal with Ryser’s conjecture for intersecting \(r\)-partite linear systems: if \(\tau\) is the transversal number for an intersecting \(r\)-partite linear system, then \(\tau\leq r-1\). If this conjecture is true, this is known to be sharp for \(r\) for which there exists a projective plane of order \(r-1\). There has also been considerable effort to find intersecting \(r\)-partite set systems whose transversal number is \(r-1\). In this note, we prove that if \(r\geq2\) is an even integer, then \(f_l(r)\geq3r-5\), where \(f_l(r)\) is the minimum number of lines of an intersecting \(r\)-partite linear system whose transversal number is \(r-1\). Aharoni \emph{et al.,} [R. Aharoni, J. Barát and I.M. Wanless, \emph{Multipartite hypergraphs achieving equality in Ryser’s conjecture}, Graphs Combin. {\bf 32}, 1–15 (2016)] gave an asymptotic lower bound: \(f_l(r)\geq3\).\(052r+O(1)\) as \(r\to\infty\). For some small values of \(r\) (\(r\geq2\) an even integer), our lower bound is better. Also, we prove that any \(r\)-partite linear system satisfies \(\tau\leq r-1\) if \(\nu_2\leq r\) for all \(r\geq3\) odd integer and \(\nu_2\leq r-2\) for all \(r\geq4\) even integer, where \(\nu_2\) is the maximum cardinality of a subset of lines \(R\subseteq\mathcal{L}\) such that any three elements chosen in \(R\) do not have a common point.